258,979 views
41 votes
41 votes
Given that sino =V48and cotê is negative, determine 0 and coté. Enter the angle O in degrees from the interval [0°, 360). Write the exact answer. Do not round.

Given that sino =V48and cotê is negative, determine 0 and coté. Enter the angle O-example-1
User Stevenmw
by
2.7k points

1 Answer

8 votes
8 votes

In this problem

we have that

sin(theta) is positive and cos(theta) is negative

That means

the angle theta lies on the II quadrant

Remember that


\cot (\theta)=(\cos(\theta))/(\sin(\theta))

Find out the value of cos(theta)


\sin ^2(\theta)+\cos ^2(\theta)=1

substitute the given value


(\frac{\sqrt[]{48}}{8})^2+\cos ^2(\theta)=1
\cos ^2(\theta)=1-(48)/(64)
\begin{gathered} \cos ^2(\theta)=(16)/(64) \\ \cos ^{}(\theta)=-(4)/(8) \end{gathered}

Find out the value of cot(theta)

substitute given values


\cot (\theta)=-\frac{4}{\sqrt[\square]{48}}

simplify


\cot (\theta)=-\frac{4}{\sqrt[\square]{48}}\cdot\frac{\sqrt[]{48}}{\sqrt[]{48}}=-\frac{4\sqrt[]{48}}{48}=-\frac{\sqrt[]{48}}{12}=-\frac{4\sqrt[]{3}}{12}=-\frac{\sqrt[]{3}}{3}

Find out the angle theta

using a calculator

angle in II quadrant

theta=120 degrees

Convert to radians ---->

User Lee Kowalkowski
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.