119k views
2 votes
ADC is a straight line. Find the unknowns following figures.

ADC is a straight line. Find the unknowns following figures.-example-1

2 Answers

3 votes

Answer:

Method 1:


\sf\\(i)\ \angle BCD=\angle CBD=28^o\ \ \ [\textsf{Base angles of isosceles triangle are equal.}]\\\\(ii)\ \angle ADB=\angle CBD+\angle BCD\ \ \ [\textsf{An exterior angle of a triangle is equal to the sum}\\\textsf{}\ \ \ \ \textsf{of the opposite interior angles.]}\\or,\ \angle ADB=28^o+28^o\\or,\ \angle ADB=56^o\\


\sf\\(iii)\ \angle BAD=\angle ABD=x\ \ \ [\textsf{AD=BD, base angles of isosceles triangle are equal.}]\\\\(iv)\ \angle BAD+\angle ABD+\angle ADB=180^o\\or,\ x+x+56^o=180^o\\or,\ 2x=124\\or,\ x=62^o

Method 2:


\sf\\(i)\ \angle BAD=\angle ABD=x\ \ \ [\textsf{Base angles of isosceles triangle are equal.}]\\\\(ii)\ \angle BDC=\angle BAD+\angle ABD\ \ \ [\textsf{An exterior angle of a triangle is equal to the sum}\\\textsf{}\ \textsf{}\ \textsf{}\ \ \ \textsf{of the opposite interior angles.]}\\or,\ \angle BDC=x+x\\or,\ \angle BDC=2x


\sf\\(iii)\ \angle BCD=\angle CBD=28^o\ \ \ \textsf{[Base angles of isosceles triangle are equal.]}\\\\(iv)\ \angle BDC+\angle CBD+\angle BCD=180^o\ \ \ [\textsf{Sum of angles of triangle is 180}^o.]\\or,\ 2x+28^o+28^o=180^o\\or,\ 2x=124^o\\or,\ x=62^o

Method 3:


\sf\\(i)\ \triangle ABC\textsf{ is right triangle.\ \ \ [AD=CD=BD, midpoint of hypotenuse being }\\\textsf{}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \textsf{equidistant to the vertices.]}\\or,\ \angle B=90^o\\\\(ii)\ \angle BCD=\angle CBD=28^o\ \ \ \textsf{[Base angles of isosceles triangle are equal.]}\\\\(iii)\ \angle ABD=x=\angle B-\angle CBD=90^o-28^o\\or,\ x=62^o

User CPerson
by
7.8k points
4 votes

Answer:

x = 62°

Explanation:

Triangle BCD and ABD are both isosceles triangles so that means that Angle C is EQUAL to Angle B reason being (base angles of an isos. triangle.

So then...

28°+28°+ Angle D= 180°

56°+Angle D= 180°

Angle D = 180°- 56°

Angle D = 124°

Then...

The top angle of Triangle is equal to 56°

180° - 56° = 124°

124°÷ 2 = 62°

x = 62°

Angle A = 62°

User SkyFox
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories