137k views
0 votes
Find the derivative of​

Find the derivative of​-example-1
User Kccqzy
by
8.6k points

1 Answer

4 votes

Answer:

Explanation:


\boxed{d((u)/(v))=(u'v-uv')/(v^2) }


Let\ u=2cos^2((x)/(2) )-1


v=cos^2(x)

Then


u'=2(2cos((x)/(2)))(-sin((x)/(2) ))((1)/(2) )


=-2sin((x)/(2)) cos((x)/(2) )


=-sin(x)


v'=2(cos(x))


=2cos(x)


d((2cos^2((x)/(2) )-1)/(cos^2x) ) = (-sin\ x(cos^2x)-(2cos^2((x)/(2) )-1)(2cos\ x))/((cos^2x)^2)


= (-sin(x) cos^2(x)-(4cos^2((x)/(2))cos(x) -2cos(x)))/(cos^4(x))


= (-sin(x) cos^2(x)-4cos^2((x)/(2))cos(x) +2cos(x))/(cos^4(x))


= (cos(x)(-sin(x) cos(x)-4cos^2((x)/(2)) +cos(x)))/(cos^4(x))


= (-sin(x) cos(x)-4cos^2((x)/(2)) +cos(x))/(cos^3(x))

User Hans Vn
by
7.9k points