411,453 views
5 votes
5 votes
Determine whethersecx cotx-cosxsin(-x) cot²xand cotx are equivalent. Justify your answer.

Determine whethersecx cotx-cosxsin(-x) cot²xand cotx are equivalent. Justify your-example-1
User Tadmc
by
2.5k points

2 Answers

18 votes
18 votes
Person above is right
User Incredible
by
2.7k points
25 votes
25 votes

we have the expression


(secxcot^2x-cosx)/(sin(-x)cot^2x)

Rewrite the given expression

Remember that

sin(-x)=-sin(x)


((1)/(cosx)(cos^2x)/(sin^2x)-cosx)/(-sinx(cos^(2)x)/(s\imaginaryI n^(2)x))

Simplify the expression


\begin{gathered} ((cosx)/(s\imaginaryI n^2x)-cosx)/(-(cos^2x)/(s\imaginaryI nx)) \\ \\ ((cosx-sin^2xcosx)/(sin^2x))/(-(cos^2x)/(sinx)) \\ \\ (cosx-s\imaginaryI n^(2)xcosx)/(s\imaginaryI n^(2)x)\colon-(cos^(2)x)/(s\imaginaryI nx) \\ \\ (sinx(cosx-sin^2xcosx))/(sin^2x(cos^2x)) \\ \\ ((cosx-sin^2xcosx))/(sin^x(cos^2x)) \\ \\ (cosx(1-s\imaginaryI n^2))/(s\imaginaryI nx(cos^2x)) \\ \\ ((1-s\imaginaryI n^2))/(s\imaginaryI nx(cosx)) \\ \\ (cos^2x)/(s\imaginaryI nx(cosx)) \\ \\ (cosx)/(sinx) \\ \\ cotx \end{gathered}

therefore

The answer is

yes, the expression is equivalent to cot(x)

User Flashrunner
by
3.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.