411,452 views
5 votes
5 votes
Determine whethersecx cotx-cosxsin(-x) cot²xand cotx are equivalent. Justify your answer.

Determine whethersecx cotx-cosxsin(-x) cot²xand cotx are equivalent. Justify your-example-1
User Tadmc
by
2.5k points

2 Answers

18 votes
18 votes
Person above is right
User Incredible
by
2.7k points
25 votes
25 votes

we have the expression


(secxcot^2x-cosx)/(sin(-x)cot^2x)

Rewrite the given expression

Remember that

sin(-x)=-sin(x)


((1)/(cosx)(cos^2x)/(sin^2x)-cosx)/(-sinx(cos^(2)x)/(s\imaginaryI n^(2)x))

Simplify the expression


\begin{gathered} ((cosx)/(s\imaginaryI n^2x)-cosx)/(-(cos^2x)/(s\imaginaryI nx)) \\ \\ ((cosx-sin^2xcosx)/(sin^2x))/(-(cos^2x)/(sinx)) \\ \\ (cosx-s\imaginaryI n^(2)xcosx)/(s\imaginaryI n^(2)x)\colon-(cos^(2)x)/(s\imaginaryI nx) \\ \\ (sinx(cosx-sin^2xcosx))/(sin^2x(cos^2x)) \\ \\ ((cosx-sin^2xcosx))/(sin^x(cos^2x)) \\ \\ (cosx(1-s\imaginaryI n^2))/(s\imaginaryI nx(cos^2x)) \\ \\ ((1-s\imaginaryI n^2))/(s\imaginaryI nx(cosx)) \\ \\ (cos^2x)/(s\imaginaryI nx(cosx)) \\ \\ (cosx)/(sinx) \\ \\ cotx \end{gathered}

therefore

The answer is

yes, the expression is equivalent to cot(x)

User Flashrunner
by
3.3k points