225k views
24 votes
How many solutions does the system 2x + y = 1 and 4x + 2y = 2 have? 15 points giveaway!

2 Answers

6 votes

Answer:

infinite number of solutions

Explanation:

2x + y = 1 ( subtract 2x from both sides )

y = 1 - 2x → (1)

4x + 2y = 2 → (2)

substitute y = 1 - 2x into (2)

4x + 2(1 - 2x) = 2 ← distribute parenthesis and simplify left side

4x + 2 - 4x = 2

2 = 2 ← true statement

This indicates the system has an infinite number of solutions

User Jamesmhaley
by
8.4k points
10 votes

Answer:

infinitely many.

Explanation:

Given the equation 2x+y=1 and 4x+2y=2, if we divide the second equation by 2, we are left with 2x+y=1 which is the same equation as the first and this means that the line overlap, and that there are infinite places where they intercept.

User Shubham Kumar
by
7.9k points

Related questions

2 answers
2 votes
207k views
asked Feb 27, 2024 131k views
Karan Alang asked Feb 27, 2024
by Karan Alang
8.0k points
2 answers
0 votes
131k views
asked Jul 15, 2024 33.4k views
Embedc asked Jul 15, 2024
by Embedc
8.2k points
2 answers
4 votes
33.4k views