Answer:
![y=8(5)^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/h7ckxjtbf69fb1451ovovxouuiq6mshkvy.png)
Explanation:
We want an exponential function that goes through the two points (0, 8) and (2, 200).
Since a point is (0, 8), this means that y = 8 when x = 0. Therefore:
![8=a(b)^0](https://img.qammunity.org/2022/formulas/mathematics/high-school/tw7k71334pj8z4i11d2r2n1df9o2w7ns2n.png)
Simplify:
![a=8](https://img.qammunity.org/2022/formulas/mathematics/high-school/35ev87ur009qzwt2st3zawe6zqyk0r6nbq.png)
So we now have:
![y = 8( b )^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/fautjuz3bw2w5hl09cn1pjj1qsq1hemwjl.png)
Likewise, the point (2, 200) tells us that y = 200 when x = 2. Therefore:
![200=8(b)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/edm4wzurpmufdhp9u6176e6ikq7fs0z52h.png)
Solve for b. Dividing both sides by 8 yields:
![b^2=25](https://img.qammunity.org/2022/formulas/mathematics/high-school/rx1wpc2fjctfsr6p4xnya5t7hy7rs63ula.png)
Thus:
![b=5](https://img.qammunity.org/2022/formulas/mathematics/high-school/66ka6h42vu8t26kbfqapj572zmvpjd9pp1.png)
Hence, our exponential function is:
![y=8(5)^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/h7ckxjtbf69fb1451ovovxouuiq6mshkvy.png)