62.8k views
4 votes
Find the derivative of y= ln(cos(ln θ))

A. -tan(ln θ)/θ
B. -tan(ln θ)
C. tan(ln θ)
D. tan(ln θ)/θ

User Paxx
by
7.6k points

2 Answers

4 votes

Answer:

A

Explanation:

the chain rule for derivatives:

f(g(x))' = f'(g(x))⋅g'(x)

in our case we have f(g(h(x))), so that

f(g(h(x)))' = f'(g(h(x))) × g(h(x))' =

= f'(g(h(x))) × g'(h(x)) × h'(x)

ln(x)' = 1/x

cos(x)' = - sin(x)

tan(x) = sin(x)/cos(x)

ln(cos(ln theta)' = (1/(cos(ln theta))) × -sin(ln theta) × 1/theta

= -sin(ln theta)/cos(ln theta) × 1/theta =

= -tan(ln theta)/theta

User Kanan Farzali
by
9.2k points
4 votes

Answer:


A. -(\tan(\ln\theta))/(\theta)

Explanation:

To find the derivative of y= ln(cos(ln θ)), we can use the chain rule twice. The chain rule states that the derivative of a composite function f(g(x)) is
\sf f'\Bigl(g(x)\Bigr)\cdot g'(x).

Let u(x)=ln(x),

v(x)=cos(x), and

w(x)=ln(x)

Then,


\sf y=u\biggl(v\Bigl(w(x)\Bigr)\biggr)

To find y', we will need to find $u'$, $v'$, and $w'$.


\sf u'(x)=(1)/(x)


\sf v'(x)=-sin(x)


\sf w'(x)=(1)/(\theta)

Now, we can apply the chain rule twice:


\begin{aligned} y' &= (d)/(dx)\left[u\biggl(v\Bigl(w(x)\Bigr)\biggr)\right] \\\\ &= u'\biggl(v\Bigl(w(x)\Bigr)\biggr) \cdot (d)/(dx)\left[v\Bigl(w(x)\Bigr)\right] \\\\ &= u'\biggl(v\Bigl(w(x)\Bigr)\biggr) \cdot v'\Bigl(w(x)\Bigr) \cdot w'(x) \\\\ &= (1)/(\cos(\ln\theta)) \cdot (-\sin(\ln\theta)) \cdot (1)/(\theta) \\\\ &= (-\sin(\ln\theta))/(\theta\cos(\ln\theta)) \\\\ &= \boxed{-(\tan(\ln\theta))/(\theta)} \end{aligned}

So,

the answer is:


A. -(\tan(\ln\theta))/(\theta)

User Mattz
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories