Answer:
A
Explanation:
the chain rule for derivatives:
f(g(x))' = f'(g(x))⋅g'(x)
in our case we have f(g(h(x))), so that
f(g(h(x)))' = f'(g(h(x))) × g(h(x))' =
= f'(g(h(x))) × g'(h(x)) × h'(x)
ln(x)' = 1/x
cos(x)' = - sin(x)
tan(x) = sin(x)/cos(x)
ln(cos(ln theta)' = (1/(cos(ln theta))) × -sin(ln theta) × 1/theta
= -sin(ln theta)/cos(ln theta) × 1/theta =
= -tan(ln theta)/theta