213k views
1 vote
F(x) = e^(cos √x) find f'(x)​

User Jorge Luis
by
6.7k points

1 Answer

4 votes

Answer:


-(e^(cos(√(x) ))sin(√(x) ) )/(2√(x) )

Explanation:

use chain rule

c(x)= e^x

c'(x) = e^x

g(x) = cos(
√(x))

g'(x) = 
(-sin(√(x) ))/(2√(x) )

(use the chain rule again, to solve for g'(x))

h(x) = cos(x)

h'(x) = -sin(x)

j(x) =
√(x)

j'(x) =
(1)/(2√(x) )

g'(x) = h'(j(x)) * j'(x)

g'(x) = -sin(
√(x)) *
(1)/(2√(x) ) =
(-sin(√(x) ))/(2√(x) )

Let's do the first expression using the chain, since now we now the value of g'(x)

f'(x) = c'(g(x))*g'(x)

f'(x) =
e^(cos(√(x) )) *
(-sin(√(x) ))/(2√(x) ) =
-(e^(cos(√(x) ))sin(√(x) ) )/(2√(x) )

User Shavkat
by
7.3k points