214k views
1 vote
Solve for X and Y

Sorry been having trouble understanding this

Solve for X and Y Sorry been having trouble understanding this-example-1

1 Answer

10 votes

Answer:


x=16.4\ y=13.7

Explanation:


[Kindly\ refer\ the\ attachment.]\\We\ are\ given\ that,\\\triangle ABC\ is\ a\ right-triangle\ and\ has\ it's\ legs\ x\ and\ z.\\It's\ altitude\ CD\ separates\ it\ into\ two\ triangles:\\\triangle BCD\ and\ \triangle ADC,\ both\ of\ which\ are\ right-triangles.\\Now,\\The\ Pythagoras\ Theorem\ tells\ us\ that:\\'The\ sum\ of\ squares\ of\ both\ the\ legs\ is\ equal\ to\ the\ square\ of\ the\\ hypotenuse'.\\Here,\\Lets\ consider\ three\ triangles\ separately.\\


In\ \triangle ADC\ right\ angle\ is\ at\ \angle ADC.\\Hence,\\AC\ is\ the\ hypotenuse, and\ AD\ and\ DC\ are\ it's\ legs.\\Hence,\\AD^2+DC^2=AC^2\\Or,\\9^2+y^2=x^2\\\\Lets\ take\ the\ above\ equation\ as\ E_1.


In\ \triangle BDC\ right\ angle\ is\ at\ \angle BDC.\\Hence,\\BC\ is\ the\ hypotenuse, and\ DC\ and\ DB\ are\ it's\ legs.\\Hence,\\DC^2+DB^2=BC^2\\Or,\\21^2+y^2=z^2\\Lets\ take\ the\ above\ equation\ as\ E_2.


Now,\\In\ whole\ \triangle ACB\ right\ angle\ is\ at\ \angle ACB.\\Hence,\\AB\ is\ the\ hypotenuse, and\ AC\ and\ BC\ are\ it's\ legs.\\Hence,\\AC^2+BC^2=AB^2\\Or,\\x^2+z^2=(21+9)^2=30^2\\Lets\ take\ the\ above\ equation\ as\ E_3.


Lets\ now\ gather\ the\ three\ equations:\\9^2+y^2=x^2\\21^2+y^2=z^2\\x^2+z^2=30^2\\Now,\\Lets\ pair\ and\ add\ E_1\ and\ E_2.\\Hence,\\(9^2+y^2)+(21^2+y^2)=(x^2)+(z^2)\\Hence,\\81+y^2+441+y^2=x^2+z^2\\Hence,\\2y^2+522=x^2+z^2\\Considering\ E_3,\\We\ already\ know\ that,\\x^2+z^2=30^2\\Hence,\\2y^2+522=30^2\\Hence,\\2y^2+522=900\\2y^2=900-522=378\\Hence,\\y^2=(378)/(2)=189\\Hence,\\y=√(189)=13.7\\


Plugging\ in\ y=13.7\ in\ E_1,\\9^2+(13.7)^2=x^2\\81+189=x^2\\x^2=270\\x=√(270)=16.4

Solve for X and Y Sorry been having trouble understanding this-example-1
User Babbata
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories