149k views
0 votes
Create a linear model for the data in the table.

x: 4,7,10,13,16,19
y: 7,16,21,29,38,43
Write a linear model for the data in the table.

Create a linear model for the data in the table. x: 4,7,10,13,16,19 y: 7,16,21,29,38,43 Write-example-1
User Erce Tilav
by
7.5k points

2 Answers

6 votes

Answer:


\sf y = \boxed{ 2.419} x + \boxed{2.152 }

Explanation:

To create a linear model for the given data, we'll use linear regression analysis. Linear regression finds the best-fit line for the data points.

The data points are as follows:


\begin{aligned} x &: 4, 7, 10, 13, 16, 19 \\ y &: 7, 16, 21, 29, 38, 43 \end{aligned}

Now, let's find the linear model using linear regression:

Calculate the mean (average) of x and y:


\sf \begin{aligned} \bar{x} &= (4 + 7 + 10 + 13 + 16 + 19)/(6) \\ &= 11.5 \end{aligned}


\sf \begin{aligned} \sf \bar{y} &= (7 + 16 + 21 + 29 + 38 + 43)/(6)\\ & = 25.666666666666 \end{aligned}

Calculate the sums of the products of deviations from the means:


\begin{aligned} \sum{(x - \bar{x})(y - \bar{y})} &= (4 - 11.5)(7 - 25.666666666666) + (7 - 11.5)(16 -25.666666666666) \\ &\quad +(10 - 11.5)(21 - 25.666666666666) + (13 - 11.5)(29 - 25.666666666666) +\\ &\quad (16 - 11.5)(38 -25.666666666666) + (19 - 11.5)(43 - 25.666666666666) \\ &= 381 \end{aligned}

Calculate the sum of the squares of deviations from the means for (x):


\begin{aligned} \sum{(x - \bar{x})^2} & = (4 - 11.5)^2 + (7 - 11.5)^2 + (10 - 11.5)^2 \\ &\quad + (13 - 11.5)^2 + (16 - 11.5)^2 + (19 - 11.5)^2 \\ & = 157.5 \end{aligned}

Use the above values to calculate the slope (m) of the best-fit line using the formula:


\begin{aligned} m &= \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sum{(x - \bar{x})^2}} & = (381)/(157.5) \\\\ &= 2.4190476190476\end{aligned}

Calculate the y-intercept (b) using the mean values and the slope:


\begin{aligned} b & = \bar{y} - m\bar{x} & = 25.666666666666 -11.5 \cdot 2.4190476190476 \\ & = 25.666666666666 - 27.8190476190474\\& = −2.1523809523814 \end{aligned}

So, the linear model for the data is :

y = 2.4190476190476x + −2.1523809523814

In 3 decimal places, the linear model for tha data is:


\sf y = \boxed{ 2.419} x + \boxed{2.152 }

This equation represents the best-fit line for the data points. It describes the relationship between x and y based on the linear regression analysis.

User Chrisgonzalez
by
8.5k points
4 votes

Answer:


y=2.419x+(-2.152)

Explanation:

Given table of values:


\begin{array}c\cline{1-7}x&4&7&10&13&16&19\\\cline{1-7}y&7&16&21&29&38&43\\\cline{1-7}\end{array}

In this dataset, the x-values increase by 3 units from one data point to the next, however, the y-values do not increase by a consistent amount for each corresponding x-value. Therefore, to determine a linear model for the data in the table, we need to perform linear regression.

Linear regression is a statistical method that models the relationship between a dependent variable and an independent variables as a linear equation to predict the dependent variable's values.

The simplest way to perform linear regression is to use a statistical calculator. After entering the data from the table into a statistical calculator we get:


a = 2.41904761...


b = -2.15238095...

The regression line of y on x is y = ax + b. Therefore, the linear model for the data in the table is:


y=2.419x+(-2.152)

where each coefficient is rounded to three decimal places.

Create a linear model for the data in the table. x: 4,7,10,13,16,19 y: 7,16,21,29,38,43 Write-example-1
User Sheodox
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories