Answer:

Explanation:
To create a linear model for the given data, we'll use linear regression analysis. Linear regression finds the best-fit line for the data points.
The data points are as follows:

Now, let's find the linear model using linear regression:
Calculate the mean (average) of x and y:


Calculate the sums of the products of deviations from the means:
![\begin{aligned} \sum{(x - \bar{x})(y - \bar{y})} &= (4 - 11.5)(7 - 25.666666666666) + (7 - 11.5)(16 -25.666666666666) \\ &\quad +(10 - 11.5)(21 - 25.666666666666) + (13 - 11.5)(29 - 25.666666666666) +\\ &\quad (16 - 11.5)(38 -25.666666666666) + (19 - 11.5)(43 - 25.666666666666) \\ &= 381 \end{aligned}]()
Calculate the sum of the squares of deviations from the means for (x):

Use the above values to calculate the slope (m) of the best-fit line using the formula:

Calculate the y-intercept (b) using the mean values and the slope:
![\begin{aligned} b & = \bar{y} - m\bar{x} & = 25.666666666666 -11.5 \cdot 2.4190476190476 \\ & = 25.666666666666 - 27.8190476190474\\& = −2.1523809523814 \end{aligned}]()
So, the linear model for the data is :
y = 2.4190476190476x + −2.1523809523814
In 3 decimal places, the linear model for tha data is:

This equation represents the best-fit line for the data points. It describes the relationship between x and y based on the linear regression analysis.