194k views
3 votes
Rewrite in terms of simpler logs (expand):

Rewrite in terms of simpler logs (expand):-example-1
User Hann
by
8.2k points

1 Answer

7 votes

Answer:


\textsf{1)} \quad 3\log_a\left(x\right)+8\log_a\left(z\right)-(5)/(6)\log_a\left(y\right)


\textsf{2)} \quad \log_a\left((1)/(x^(14)y^(28))\right)

Explanation:

Question 1

Given logarithmic expression:


\log_a\left(\sqrt[6]{(x^(18)z^(48))/(y^5)}\right)

To rewrite the given logarithmic expression in terms of simpler logs, begin by applying the fractional exponent rule:


\log_a\left(\left((x^(18)z^(48))/(y^5)\right)^{(1)/(6)\right)

Now, apply the power rule of logarithms:


(1)/(6)\log_a\left((x^(18)z^(48))/(y^5)\right)

Apply the quotient rule of logarithms:


(1)/(6)\log_a\left(x^(18)z^(48)\right)-(1)/(6)\log_a\left(y^5\right)

Apply the product rule of logarithms:


(1)/(6)\log_a\left(x^(18)\right)+(1)/(6)\log_a\left(z^(48)\right)-(1)/(6)\log_a\left(y^5\right)

Apply the power rule of logarithms:


(18)/(6)\log_a\left(x\right)+(48)/(6)\log_a\left(z\right)-(5)/(6)\log_a\left(y\right)

Simplify the fractions:


3\log_a\left(x\right)+8\log_a\left(z\right)-(5)/(6)\log_a\left(y\right)


\hrulefill

Question 2

Given logarithmic expression:


(3)/(8)\left[16\log_a(x)+32\log_a(y)\right]-5\left[4\log_a(x)+8\log_a(y)\right]

Apply the power rule of logarithms inside the brackets:


(3)/(8)\left[\log_a(x^(16))+\log_a(y^(32))\right]-5\left[\log_a(x^(4))+\log_a(y^(8))\right]

Apply the product rule of logarithms inside the brackets:


(3)/(8)\log_a(x^(16)y^(32))-5\log_a(x^(4)y^(8))

Apply the power rule of logarithms:


\log_a\left((x^(16)y^(32))^{(3)/(8)\right)-\log_a\left((x^(4)y^(8))^5\right)

Apply the power of a power rule of exponents:


\log_a(x^(6)y^(12))-\log_a(x^(20)y^(40))

Apply the quotient rule of logarithms:


\log_a\left((x^(6)y^(12))/(x^(20)y^(40))\right)

Simplify the argument:


\log_a\left((1)/(x^(14)y^(28))\right)


\hrulefill


\boxed{\begin{array}{rl}\underline{\sf Laws\;of\;Exponents}\\\\\sf Product:&\log_axy=\log_ax + \log_ay\\\\\sf Quotient:&\log_a \left((x)/(y)\right)=\log_ax - \log_ay\\\\\sf Power:&\log_ax^n=n\log_ax\\\\\end{array}}

User Milosdju
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories