179k views
5 votes
Select the two values of x that are roots of this equation 2x²-11x+15=0

1 Answer

3 votes

Answer:


x=(5)/(2),\:x=3

Explanation:


\mathrm{Factor\:}2x^2-11x+15


\mathrm{Break\:the\:expression\:into\:groups}


\left(2x^2-5x\right)+\left(-6x+15\right)


\mathrm{Factor\:out}\:x\:\mathrm{from}\:2x^2-5x:\quad \:x\left(2x-5\right)
\mathrm{Factor\:out}\:-3\:\mathrm{from}\:-6x+15:\quad \:-3\left(2x-5\right)


x\left(2x-5\right)-3\left(2x-5\right)


\mathrm{Factor\:out\:common\:term\:}2x-5


\left(2x-5\right)\left(x-3\right)


\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0


2x-5=0\quad \mathrm{or}\quad \:x-3=0


\mathrm{Solve\:}\:2x-5=0:\quad x=(5)/(2)


\mathrm{Solve\:}\:x-3=0:\quad x=3


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=(5)/(2),\:x=3

User Sui
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories