Answer: Read the step by step explanation for the answer.
Step-by-step explanation:
We can prove this trigonometric identity using the product-to-sum and Pythagorean identities as follows:
Starting with the left-hand side (LHS):
cos(A + B).cos(A - B)
Using the product-to-sum identity:
= [cos A cos B - sin A sin B][cos A cos B + sin A sin B]
= cos²A cos²B - sin²A sin²B
Using the Pythagorean identity:
= cos²A(1 - sin²B) - sin²A(1 - cos²B)
= cos²A - cos²A sin²B - sin²A + sin²A cos²B
= cos²A - sin²A + sin²A cos²B - cos²A sin²B
Using the Pythagorean identity:
= cos²A - sin²A + sin²A(1 - sin²B) - cos²A sin²B
= cos²A - sin²A + sin²A - sin²A sin²B - cos²A sin²B
= cos²A - sin²A + sin²A cos²B - sin²B cos²A
= cos²A - sin²A + cos²A sin²B - sin²B cos²A
Using the Pythagorean identity:
= cos²A - sin²A + cos²A - sin²B
= 2cos²A - sin²A - sin²B
= cos²A + cos²A - sin²A - sin²B
= cos²A + sin²A cos²B - sin²B
= RHS
Therefore, we have shown that (b) cos(A + B).cos(A-B) = cos B-sin²A = cos²A-sin-B.