10.7k views
0 votes
Find the range if the function for each given domain f(x)=2x+3;[-2,-1,0,1,2]

1 Answer

4 votes

Given:-


  • \sf{f ( x ) = 2x + 3 - - - eqⁿ}


\:


  • \sf{Domains = \bold{[-2 , -1 , 0 , 1 , 2]}}


\:

To find:-


  • \sf{Range \: of \: the \: function = {?} }


\:


\underline{ \sf \: 1 ] \: f ( x ) = 2x + 3}

now , put the value of x = -2 in eqⁿ


\sf{↣f ( x ) = 2x + 3}


\sf{↣ f ( -2 ) = 2( -2 ) + 3}


\sf{↣ f ( - 2 ) = -4 + 3}


\boxed{ \sf \red{↣ f ( -2 ) = -1}}


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━


\underline{ \sf{ \: 2] \: f ( x ) = 2x + 3 \: }}

put the value of x = -1 in eqⁿ


\sf{↣f ( x ) = 2x + 3}


\sf{↣f ( -1 ) = 2( -1 ) + 3}


\sf{↣f ( -1 ) = -2 + 3}


\boxed{ \sf \color{green}↣f ( -1 ) = 1 }


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━


\underline{ \sf{ \: 3 ] \: f ( x ) = 2x + 3 \: }}

put the value of x = 0 in eqⁿ


\sf{↣f ( x ) = 2x + 3}


\sf{↣f ( 0 ) = 2( 0 ) + 3}


\sf{↣f ( 0 ) = 0 + 3}


\boxed{ \sf \blue{↣f ( 0 ) = 3}}


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━


\underline{ \sf{ \: 4 ] \: f ( x ) = 2x + 3 \: }}

put the value of x = 1 in eqⁿ


\sf{↣f ( x ) = 2x + 3}


\sf{↣f ( 1 ) = 2( 1 ) + 3}


\sf{↣f ( 1 ) = 2 + 3}


\boxed { \sf \color{brown}↣f ( 1 ) = 5}


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━


\underline {\sf{ \:5 ] \: f ( x ) = 2x + 3 \: }}

put the value of x = 2 in eqⁿ


\sf{↣f ( x ) = 2x + 3}


\sf{↣f ( 2 ) = 2( 2 ) + 3}


\sf{↣f ( 2 ) = 4 + 3}


\boxed{ \sf \purple{↣f ( 2 ) = 7}}


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━

Range of the function for each domain is:-


  • \bold{ \underline{ \boxed{ \sf \blue{-1, 1, 3, 5, 7.}}}}


\:

hope it helps! :)

User Abuder
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories