Answer:
49
Explanation:
Let the three numbers be a1, a2, a3
Let the number to be added to form a geometric progression = x
a1 = 1 + x ; a2 = 11 + x ; a3 = 23 + x
For a geometric progression :
a2 = a1 * r
a2 = (1+x)r
11+x = (1+x)r - - (1)
r = (11+x) / (1+x) ---(1)
a3 = a2 * r
a3 = (11+x)r
23+x = (11+x)r - - -
r = (23+x) / (11+x) - - (2)
Equate (1) and (2)
(11+x) / (1+x) = (23+x) / (11+x)
(11+x) * (11+x) = (23+x) * (1+x)
121 + 22x + x² = 23 + 24x + x²
121 + 22x + x² - x² - 24x - 23 = 0
98 - 2x = 0
-2x = - 98
x = 98 / 2
x = 49