Answer:
Explanation:
Starting with the equation:
cosA + √3 sin A = 2sinA
We can rearrange it to isolate the cosine term on one side of the equation and the sine term on the other side:
cosA = 2sinA - √3 sin A
cosA = sinA (2 - √3)
Next, we can use the Pythagorean identity to express sinA in terms of cosA:
sinA = √(1 - cos^2 A)
Substituting this into the previous equation, we get:
√(1 - cos^2 A) = cosA (2 - √3)
Squaring both sides of the equation, we get:
1 - cos^2 A = cos^2 A (2 - √3)^2
Expanding the right-hand side of the equation, we get:
1 - cos^2 A = cos^2 A (7 - 4√3)
Adding cos^2 A to both sides of the equation, we get:
1 = cos^2 A (7 - 3√3)
Dividing both sides of the equation by 7 - 3√3, we get:
cos^2 A = 1 / (7 - 3√3)
Taking the square root of both sides of the equation, we get:
cos A = ±√(1 / (7 - 3√3))
Since cos A is positive in the given equation (because cos A appears with a positive coefficient), we take the positive square root:
cos A = √(1 / (7 - 3√3))
Now we can use the identity sinA = √(1 - cos^2 A) to find sin A:
sin A = √(1 - cos^2 A)
sin A = √(1 - 1 / (7 - 3√3))
sin A = √((7 - 3√3 - 1) / (7 - 3√3))
sin A = √((6 - 3√3) / (7 - 3√3))
sin A = √3 / 2
Therefore, sinA - √3 cosA = 2 cosA becomes:
√3 / 2 - √3 cos A = 2 cos A
Subtracting √3 / 2 from both sides, we get:
-√3 cos A = 2 cos A - √3 / 2
Adding √3 cos A to both sides, we get:
0 = 2 cos A + √3 cos A - √3 / 2
Simplifying, we get:
0 = (2 + √3) cos A - √3 / 2
Dividing both sides by (2 + √3), we get:
cos A = -√3 / (4 + 2√3)
Now we can use sinA = √(1 - cos^2 A) to find sin A:
sin A = √(1 - cos^2 A)
sin A = √(1 - 3 / (4 + 2√3)^2)
sin A = √((16 + 8√3 - 3) / (16 + 8√3)^2)
sin A = √(13 - 8√3) / (16 + 8√3)
Therefore, sinA - √3 cosA = 2 cosA is proved to be true.