Answer:
x > 4; r–1(x) = 4 + StartRoot StartFraction 11 Over x EndFraction EndRoot
Explanation:
We are given that
![r(x)=(11)/((x-4)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eogieviu7ibo0fq702h3vw9fi46j0tqgri.png)
We have to find the domain of restriction on r(x) and corresponding inverse function.
Let
![y=r(x)=(11)/((x-4)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zspzceuxeyjr5hi2qxeixawq08qwno478g.png)
![(x-4)^2=(11)/(y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qkl0ca78ehfc5ysq4t6k3gpv8fmzlx2ugm.png)
![x-4=\sqrt{(11)/(y)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/9uexzj456svzp4tr0q7bmhkib65g4c8ho6.png)
![x=\sqrt{(11)/(y)}+4](https://img.qammunity.org/2022/formulas/mathematics/high-school/149dsymx9w4iyg2vje9is5a403k3uoiue6.png)
![r^(-1)(y)=\sqrt{(11)/(y)}+4](https://img.qammunity.org/2022/formulas/mathematics/high-school/fkn231ex7dbekpottqpxvyai56n3q8xf6d.png)
Now, replace x by y and y by x then, we get
![r^(-1)(x)=\sqrt{(11)/(x)}+4](https://img.qammunity.org/2022/formulas/mathematics/high-school/p8hg8wqy608melpb5e8w846jcpn98a1f43.png)
The function is not defined at x=4
But,
The inverse function defines for all positive real values.
Therefore, domain of r(x)=x>4 and inverse function
![r^(-1)(x)=\sqrt{(11)/(x)}+4](https://img.qammunity.org/2022/formulas/mathematics/high-school/p8hg8wqy608melpb5e8w846jcpn98a1f43.png)
Option:
x > 4; r–1(x) = 4 + StartRoot StartFraction 11 Over x EndFraction EndRoot