142k views
18 votes
Given r(x) = StartFraction 11 Over (x minus 4) squared EndFraction , which represents a domain restriction on r(x) and the corresponding inverse function? X > 4; r–1(x) = 4 minus StartRoot StartFraction 11 Over x EndFraction EndRoot x > 4; r–1(x) = 4 + StartRoot StartFraction 11 Over x EndFraction EndRoot x > –4; r–1(x) = 4 minus StartRoot StartFraction 11 Over x EndFraction EndRoot x > –4; r–1(x) = 4 + StartRoot StartFraction 11 Over x EndFraction EndRoot

User Nukeforum
by
3.2k points

2 Answers

7 votes

Answer:

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Explanation:

b

User Chew
by
3.3k points
6 votes

Answer:

x > 4; r–1(x) = 4 + StartRoot StartFraction 11 Over x EndFraction EndRoot

Explanation:

We are given that


r(x)=(11)/((x-4)^2)

We have to find the domain of restriction on r(x) and corresponding inverse function.

Let


y=r(x)=(11)/((x-4)^2)


(x-4)^2=(11)/(y)


x-4=\sqrt{(11)/(y)}


x=\sqrt{(11)/(y)}+4


r^(-1)(y)=\sqrt{(11)/(y)}+4

Now, replace x by y and y by x then, we get


r^(-1)(x)=\sqrt{(11)/(x)}+4

The function is not defined at x=4

But,

The inverse function defines for all positive real values.

Therefore, domain of r(x)=x>4 and inverse function


r^(-1)(x)=\sqrt{(11)/(x)}+4

Option:

x > 4; r–1(x) = 4 + StartRoot StartFraction 11 Over x EndFraction EndRoot

User Steve Platz
by
3.2k points