82.5k views
4 votes
How do you do the square root of 48 over the square root of 42 this is Algebra 1?

User Namek
by
8.1k points

1 Answer

1 vote

Answer:

Explanation:

Simplify the following:

(sqrt(48))/(sqrt(42))

Rationalize the denominator. (sqrt(48))/(sqrt(42)) = (sqrt(48))/(sqrt(42))×(42^(1 - 1/2))/(42^(1 - 1/2)) = (sqrt(48)×42^(1 - 1/2))/42:

(sqrt(48)×42^(1 - 1/2))/42

Combine powers. (sqrt(48)×42^(1 - 1/2))/42 = sqrt(48)×42^((1 - 1/2) - 1):

sqrt(48)×42^((1 - 1/2) - 1)

Put 1 - 1/2 over the common denominator 2. 1 - 1/2 = 2/2 - 1/2:

sqrt(48)×42^((2/2 - 1/2) - 1)

2/2 - 1/2 = (2 - 1)/2:

sqrt(48)×42^(((2 - 1)/2) - 1)

2 - 1 = 1:

sqrt(48)×42^(1/2 - 1)

Put 1/2 - 1 over the common denominator 2. 1/2 - 1 = 1/2 - 2/2:

sqrt(48)×42^(1/2 - 2/2)

1/2 - 2/2 = (1 - 2)/2:

sqrt(48)×42^((1 - 2)/2)

1 - 2 = -1:

sqrt(48)×42^((-1)/2)

sqrt(48) = sqrt(2^4×3) = 2^2 sqrt(3):

2^2 sqrt(3) 1/sqrt(42)

2^2 = 4:

4 sqrt(3) 1/sqrt(42)

Rationalize the denominator. (4 sqrt(3))/(sqrt(42)) = (4 sqrt(3))/(sqrt(42))×(sqrt(42))/(sqrt(42)) = (4 sqrt(3) sqrt(42))/42:

(4 sqrt(3) sqrt(42))/42

The gcd of 4 and 42 is 2, so (4 sqrt(3) sqrt(42))/42 = ((2×2) sqrt(3) sqrt(42))/(2×21) = 2/2×(2 sqrt(3) sqrt(42))/21 = (2 sqrt(3) sqrt(42))/21:

(2 sqrt(3) sqrt(42))/21

sqrt(3) sqrt(42) = sqrt(3×42):

2/21 sqrt(3×42)

3×42 = 126:

(2 sqrt(126))/21

sqrt(126) = sqrt(3^2×14) = 3 sqrt(14):

2/21 3 sqrt(14)

3/21 = 3/(3×7) = 1/7:

Answer: (2 sqrt(14))/7

User Luxdvie
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories