Answer:
![Sum = 832](https://img.qammunity.org/2022/formulas/mathematics/college/yqseg48ntov2xpogorcd1mhsnibdkx7wuf.png)
Explanation:
Given
See attachment
Required
Evaluate
The expression can be expressed as:
![Sum = 2n + 5;\ n=1...26](https://img.qammunity.org/2022/formulas/mathematics/college/6k0pu7jrugimoz09csbp6q4d3dflpez4f5.png)
To do this, we make use of sum of n terms of an AP.
When n = 1
--- T1
When n = 2
--- T2
When n - 26
--- T26
Next, we calculate d (common difference)
![d = T_2 - T_1](https://img.qammunity.org/2022/formulas/mathematics/college/9v9tu9pty3p10cc6xi2kkgk3ubsghhyvis.png)
![d = 9 - 7 = 2](https://img.qammunity.org/2022/formulas/mathematics/college/ha7w9mtvsdlnul1gq4f8b6xf4nq93qfhu1.png)
So, the sum is:
![Sum = (n)/(2)(T_1 + T_n)](https://img.qammunity.org/2022/formulas/mathematics/college/z4zejzjftb9j09wt4m1vo1dywygvwltmsa.png)
Let n = 26
So, we have:
![Sum = (26)/(2)(T_1 + T_(26))](https://img.qammunity.org/2022/formulas/mathematics/college/lfgp88q8ct6bcnjbg4n4vj2itikz1tiujn.png)
Substitute values for T1 and T26
![Sum = (26)/(2)(7+57)](https://img.qammunity.org/2022/formulas/mathematics/college/z8jf2o8lwdxk517gobd4z838mnydf7yyr7.png)
![Sum = (26)/(2)(64)](https://img.qammunity.org/2022/formulas/mathematics/college/sach6dacgnk9khm46wiuevzua79luzg7tm.png)
![Sum = 13*64](https://img.qammunity.org/2022/formulas/mathematics/college/3vsxrbs22jnjji1sclar52m61bw9wcuuol.png)
![Sum = 832](https://img.qammunity.org/2022/formulas/mathematics/college/yqseg48ntov2xpogorcd1mhsnibdkx7wuf.png)