29.0k views
4 votes
Classwork
If tan x = 1, evaluate Sin x+ cos x, leaving your answer in surd form

1 Answer

2 votes

Answer:

sin x + cos x =
√(2)

Explanation:

given

tan x = 1 , then

x =
tan^(-1) (1) = 45°

the exact values of both sin45° and cos45° =
(1)/(√(2) ) , then

sin x + cos x

= sin45° + cos45°

=
(1)/(√(2) ) +
(1)/(√(2) )

=
(2)/(√(2) )

rationalise the denominator by multiplying numerator/ denominator by
√(2)

=
(2(√(2)) )/(√(2)(√(2)) )

=
(2√(2) )/(2)

=
√(2)

User Bsneeze
by
8.2k points