108k views
4 votes
Admission for a movie is $8 for children and $12 for adults. On a certain day, 3200 people attend the movie theater and $33,040 is collected.

How many children and how many adults attended the movies?



children

adults

1 Answer

3 votes
Let us assume the number of children attending the movie = x
Let us also assume the number of adults attending the movie = y
Cost of admission for a children in the movie = $8
Cost of admission of an adult in the movie = $12
Number of people going to the movie on a certain day = 3200
Total amount collected from the movie theater = $33040
Then
x + y = 3200
And
8x + 12y = 33040
2x + 3y = 8260
Let us first take the equation
x + y = 3200
x = 3200 - y
Now we will put the value of x in the equation
2x + 3y = 8260
2(3200 - y) + 3y = 8260
6400 - 2y + 3y = 8260
y = 8260 - 6400
= 1860
Now we will put the value of y from the above deduction in the equation
x + y = 3200
x + 1860 = 3200
x = 3200 - 1860
= 1340
So the number of children going to the movie theater is 1340 and the number of adults going to the movie theater is 1860.
User JohnFilleau
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.