198k views
3 votes
Find the roots of the equation by completing the square: 3x^2-6x-2=0. Prove your answer by solving by the quadratic formula.

User Kobrien
by
8.4k points

2 Answers

3 votes

3x^2-6x-2=0\\\\(\sqrt3\ x)^2-2\cdot\sqrt3\ x\cdot\sqrt3+(\sqrt3)^2-(\sqrt3)^2-2=0\\\\(\sqrt3\ x-\sqrt3)^2-3-2=0\\\\(\sqrt3\ x-\sqrt3)^2=5\iff\sqrt3\ x-\sqrt3=-\sqrt5\ \vee\ \sqrt3\ x-\sqrt3=\sqrt5\\\\\sqrt3\ x=\sqrt3-\sqrt5\ \vee\ \sqrt3\ x=\sqrt3+\sqrt5\ \ \ \ \ |multiply\ both\ sides\ by\ \sqrt3\\\\3x=3-√(15)\ \vee\ 3x=3+√(15)\ \ \ \ \ \ \ |divide\ both\ sides\ by\ 3\\\\x=(3-√(15))/(3)\ \vee\ x=(3+√(15))/(3)




Prove:\\\\3x^2-6x-2=0\\a=3;\ b=-6;\ c=-2\\\Delta=b^2-4ac\to\Delta=(-6)^2-4\cdot3\cdot(-2)=36+24=60\\\\x_1=(-b-\sqrt\Delta)/(2a);\ x_2=(-b+\sqrt\Delta)/(2a)\\\\\sqrt\Delta=√(60)=√(4\cdot15)=\sqrt4\cdot√(15)=2√(15)\\\\x_1=(6-2√(15))/(2\cdot3)=(3-√(15))/(3)\ \vee\ x_2=(6+2√(15))/(2\cdot3)=(3+√(15))/(3)
User Denizmveli
by
8.6k points
4 votes
Calculating delta:
Δ=b²-4ac
a=3
b=-6
c=-2
Δ=36-4*3*(-2)=36+24=60
√Δ=√60
Delta is positive so there are two roots:
x1=
\frac{ -b+ \sqrt[2]{delta} }{2a}
x1=
(6+ √(delta) )/(2*3)=
(3+ √(15) )/(3)
x2=
(3- √(15) )/(3)
User Mihi
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories