93,968 views
35 votes
35 votes
Determine the number of terms in the arithmetic sequence below

Determine the number of terms in the arithmetic sequence below-example-1
User Fbrereto
by
2.6k points

1 Answer

19 votes
19 votes

First Term = a = -70

Last Term = 60


\begin{gathered} \text{The general term for an arithmetic progression goes thus:} \\ T_n=a+(n-1)d \\ \text{where T}_n=An\text{ arbitrary term} \\ n=\text{ ordinal} \\ d=\text{common difference} \\ a=\text{first term} \end{gathered}

To get n, we substitute the values of the other variables to get n.


\begin{gathered} \text{Subtract a from both sides} \\ (n-1)d=T_n-a \\ \text{Divide d from both sides} \\ n-1=(T_n-a)/(d) \\ \text{Add 1 to both sides} \\ n=(T_n-a)/(d)+1 \end{gathered}

where Tn = last term = 60

a = -70

d = 1


\begin{gathered} n=(60-(-70))/(1)+1 \\ n=(130)/(1)+1=130 \end{gathered}

n = last ordinal = 130

User Hridayesh
by
2.6k points