7.0k views
4 votes
That is the polynomial in x^3+6x^2+5x-12?

User Gavo
by
9.1k points

2 Answers

2 votes
x³ + 6x² + 5x - 12

= x³ - x² + 7x² + 12x - 12

If we add all the coefficients, we get that the answer is 0. Thus, (x-1) is a factor of polynomial.

= x²(x-1) + 7x(x-1) + 12(x-1)

on re-arranging (x-1) as a common factor ;

= (x-1)(x²+7x+12) .........................................(1)

Now, we factorize (x² + 7x + 12)

(x² + 7x + 12)

= x² + 3x + 4x + 12
= x(x + 3) + 4(x + 3)

= (x + 4)( x +3) ..........................................(2)

On substituting for p(x) in 1 and 2, we get

(px) = (x-1)(x+4)(x+3)

User Joe Strommen
by
8.0k points
2 votes

x^3+6x^2+5x-12=x^3-x^2+7x^2-7x+12x-12=\\\\=x^2(x-1)+7x(x-1)+12(x-1)=(x-1)(x^2+7x+12)=\\\\=(x-1)(x^2+3x+4x+12)=(x-1)[x(x+3)+4(x+3)]=\\\\=(x-1)(x+3)(x+4)
User Jacob Mulquin
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories