33.2k views
0 votes
For which system of equations is (2, 2) a solution?

a. –3x + 3y = 0 x + 6y = 10
b. –2x + 5y = –6 4x – 2y = 4
c. 5x – 2y = –6 3x – 4y = 2
d. 2x + 3y = 10 4x + 5y = 18

User Lodewijk
by
8.5k points

1 Answer

2 votes
Plug the values (x,y)=(2,2) into the equations and check if they satsify them.

a.

-3x+3y=0 \\ x+6y=10 \\ \\ \hbox{the first equation:} \\ -3 * 2+3 * 2=0 \\ -6+6=0 \\ 0=0 \\ true \\ \\ \hbox{the second equation:} \\ 2+6 * 2=10 \\ 2+12=10 \\ 14=10 \\ false \\ \\ \hbox{(2,2) satisfies only one of the equations} \\ \hbox{so it's not a solution to the system of equations}

b.

-2x+5y=-6 \\ 4x-2y=4 \\ \\ \hbox{the first equation:} \\ -2 * 2 + 5 * 2=-6 \\ -4+10=-6 \\ 6=-6 \\ false \\ \\ \hbox{the second equation:} \\ 4 * 2-2 * 2=4 \\ 8-4=4 \\ 4=4 \\ true \\ \\ \hbox{(2,2) satisfies only one of the equations} \\ \hbox{so it's not a solution to the system of equations}

c.

5x-2y=-6 \\ 3x-4y=2 \\ \\ \hbox{the first equation:} \\ 5 * 2 - 2 * 2=-6 \\ 10-4=-6 \\ 6=-6 \\ false \\ \\ \hbox{the second equation:} \\ 3 * 2 - 4 * 2=2 \\ 6-8=2 \\ -2=2 \\ false \\ \\ \hbox{(2,2) satisfies none of the equations} \\ \hbox{so it's not a solution to the system of equations}

d.

2x+3y=10 \\ 4x+5y=18 \\ \\ \hbox{the first equation:} \\ 2 * 2 + 3 * 2=10 \\ 4+6=10 \\ 10=10 \\ true \\ \\ \hbox{the second equation:} \\ 4 * 2 + 5 * 2 =18 \\ 8+10=18 \\ 18=18 \\ \\ \hbox{(2,2) satisfies both of the equations} \\ \hbox{so it is a solution to the system of equations}

The answer is D.
User Aydan
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories