63.4k views
0 votes
What is the domain (in interval notation) of the following functions?

1. g(x)=3/(5x-4)
2. h(x)=√(x)/(x-5)
3. f(x)=√(x)/(x^2-5x)
4. g(x)=(√(x)+5)/(x^2-x-20)
5. h(x)=3/(x^2+1)
6. f(x)=(√(x-2))/(x+1)
7. g(x)= x^2/(3x^2-x-2
8. h(x)=3(x-4)^2-7
Number sets in parenthesis are either on top of or beneath the fraction bar and ^2 here represents a number squared.

User Zeppomedio
by
8.5k points

1 Answer

3 votes

1.\\g(x)=(3)/(5x-4)\\\\D:5x-4\\eq0\to5x\\eq4\ \ \ /:5\to x\\eq(4)/(5)\to x\in\mathbb{R}\ \backslash\ \{(4)/(5)\}\\\\2.\\h(x)=(√(x))/(x-5)\\\\D:x\geq0\ \wedge\ x-5\\eq0\to x\geq0\ \wedge\ x\\eq5\to x\in\left<0;\ \infty\right)\ \backslash\ \{5\}


3.\\f(x)=(√(x))/(x^2-5x)\\\\D:x\geq0\ \wedge\ x^2-5x\\eq0\to x\geq0\ \wedge\ x(x-5)\\eq0\\\\\to x\geq0\ \wedge\ x\\eq0\ \wedge\ x\\eq5\to x\in\mathbb{R^+}\ \backslash\ \{5\}\\\\4.\\g(x)=(√(x)+5)/(x^2-x-20)\\\\D:x\geq0\ \wedge\ x^2-x-20\\eq0\to x\geq0\ \wedge\ (x+4)(x-5)\\eq0\\\\\to x\geq0\ \wedge\ x\\eq-4\ \wedge\ x\\eq5\to x\in\left<0;\ \infty\right)\ \backslash\ \{-4;\ 5\}


5.\\h(x)=(3)/(x^2+1)\\\\D:x^2+1\\eq0\to x^2\\eq-1\to x\in\mathbb{R}\\\\6.\\f(x)=(√(x-2))/(x+1)\\\\D:x-2\geq0\ \wedge\ x+1\\eq0\to x\geq2\ \wedge\ x\\eq-1\to x\in\left<2;\ \infty\right)


7.\\g(x)=(x^2)/(3x^2-x-2)\\\\D:3x^2-x-2\\eq0\to (3x+2)(x-1)\\eq0\to x\\eq-(2)/(3)\ \wedge\ x\\eq1\\\\\to x\in\mathbb{R}\ \backslash\ \{-(2)/(3);\ 1\}\\\\8.\\h(x)=3(x-4)^2-7\\\\D:x\in\mathbb{R}
User Jiin
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories