193k views
0 votes
Evaluate S5 for 300 + 150 + 75 + … and select the correct answer below. 18.75 93.75 581.25 145.3125

2 Answers

2 votes

we have that


300 + 150 + 75 +...

Let


a1=300\\ a2=150\\ a3=75

we know that


(a2)/(a1) =(150)/(300) \\\\ (a2)/(a1)=0.5 \\ \\ a2=a1*0.50


(a3)/(a2) =(75)/(150) \\\\ (a3)/(a2)=0.5 \\ \\ a3=a2*0.50

so


a(n+1)=an*0.50

Is a geometric sequence

Find the value of
a4


a(4)=a3*0.50


a(4)=75*0.50


a(4)=37.5

Find the value of
a5


a(5)=a4*0.50


a(5)=37.5*0.50


a(5)=18.75

Find
S5


S5=a1+a2+a3+a4+a5\\ S5=300+150+75+37.5+18.75\\ S5=581.25

therefore

the answer is


581.25

Alternative Method

Applying the formula


S_n=(a_1 (1-r^n))/(1-r) \\\\a_1=300 \\ r=(1)/(2)\\\\ S_5=(300(1-((1)/(2))^5))/(1-(1)/(2))\\\\=(300(1-(1)/(32)))/((1)/(2))\\\\=(300 * (31)/(32))/((1)/(2))\\\\=(75 * (31)/(8))/((1)/(2))\\\\=((2325)/(8))/((1)/(2))\\\\=(2325)/(8) * 2\\\\=(2325)/(4)\\\\=581 (1)/(4)\\\\=581.25

therefore

the answer is


581.25

User Kooskoos
by
7.1k points
4 votes
It's a geometric sequence.


300, 150, 75,... \\ \\ a_1=300 \\ r=(a_2)/(a_1)=(150)/(300)=(1)/(2) \\ \\ S_n=(a_1 (1-r^n))/(1-r) \\ \Downarrow \\ S_5=(300(1-((1)/(2))^5))/(1-(1)/(2))=(300(1-(1)/(32)))/((1)/(2))=(300 * (31)/(32))/((1)/(2))=(75 * (31)/(8))/((1)/(2))=((2325)/(8))/((1)/(2))=(2325)/(8) * 2= \\ =(2325)/(4)=581 (1)/(4)=581.25

The answer is 581.25.
User Adnan Ahmed
by
7.9k points