218k views
5 votes
If -nx^3 + tx + c = 0, what is x equal to?


Never mind, found it. 

1 Answer

5 votes

-nx^3 + tx + c = 0\ /:(-n)\ \ \ \wedge\ \ \ n \\eq 0\\ \\x^3- (t)/(n) x-(c)/(n)=0\\ \\\Delta=(- (t)/(n))^3+(-(c)/(n))^2= (-t^3)/(n^3) + (c^2)/(n^2) = (-t^3+n\cdot c^2)/(n^3) \\ \\\Delta>0\ \ \Rightarrow\ \ \ x= \sqrt[3]{ (c)/(2n)- \sqrt\Delta} } +\sqrt[3]{ (c)/(2n)+ \sqrt\Delta} \\ \\\Delta=0\ \ \ \Rightarrow\ \ \ x_1=\sqrt[3]{ (c)/(2n)},\ \ \ \ x_2=-2\sqrt[3]{ (c)/(2n)}\\ \\\Delta<0\ \ \ \Rightarrow\ \ \ there\ is\ no\ solution\ for\ x\in R
User Jlocker
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories