78.6k views
4 votes
What are the side lengths of a rectangle if the area = 40 in and the perimeter = 48 in

User Mrts
by
8.2k points

2 Answers

6 votes

a,b-the\ side\ lengths\ of\ a\ rectangle\\ \\a\cdot b=40\ [in^2]\ \ \wedge\ \ \ 2\cdot(a+b)=48\ [in]\\ \\ a+b=24\ \ \ \Rightarrow\ \ \ a=24-b\ \ \ \Rightarrow\ \ \ ab=(24-b)b=24b-b^2\\ \\ab=40\ \ \ \Rightarrow\ \ \ 24b-b^2=40\ \ \ \Rightarrow\ \ \ -b^2+24b-40=0\ /\cdot(-1)\\ \\b^2-24b+40=0\ \ \Rightarrow\ \Delta=(-24)^2-4\cdot40=576-160=416=16\cdot 26\\ \\


√(\Delta) =4 √(26) \ \ \ \Rightarrow\ \ \ b_1= (24-4 √(26) )/(2)=12-2 √(26)\ \Rightarrow\ a_1=12+2 √(26) \\ \\.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b_2= (24+4 √(26) )/(2)=12+2 √(26)\ \Rightarrow\ a_2=12-2 √(26)
User Felixhummel
by
8.5k points
3 votes
4, 10, 4, 10. 10*4 gives area of 40. 10+10+4+4 gives 48 as shown in question
User Abhishek Potnis
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories