211k views
0 votes
Convert to vertex form. 
y=2x^2+14x-4

User Mrinmoy
by
8.0k points

2 Answers

0 votes

To \ convert \ the \ standard \ form \ y = ax^2 + bx + c \ of \ a \ function \ into \ vertex \\ \\form \ y = a(x - h)^2 + k \\ \\ Here \ the \ point \ (h, k) \ is \ called \ as \ vertex \\ \\ h=(-b)/(2a) , \ \ \ \ k= c - (b^2)/(4a)


y=2x^2+14x-4 \\ \\a=2 ,\ b=14 , \ c=-4 \\ \\ h=(-14)/(2*2)=-(14)/(4)=-3.5 \\ \\k= -4 - (14^2)/(4\cdot 2)=-4-(196)/(8)=-4-24.5=-28.5 \\ \\ y=2(x+3.5)^2 -28.5


User Tristansokol
by
8.1k points
0 votes

y=2x^2+14x-4\\\\a=2;\ b=14;\ c=-4\\\\vertex\ form:y=a(x-h)^2+k\\\\where:h=(-b)/(2a)\ and\ k=(-(b^2-4ac))/(4a)\\\\h=-(-14)/(2\cdot2)=-(7)/(2)\\\\k=(-(14^2-4\cdot2\cdot(-4)))/(4\cdot2)=(-(196+32))/(8)=(-228)/(8)=-(57)/(2)\\\\\\Answer:y=2(x+(7)/(2))^2-(57)/(2)
User Ven Nilson
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories