111k views
11 votes
Which is the simplified form of (9c^-9)^-3?

2 Answers

6 votes

Answer:

b

Explanation:

User AkkeyLab
by
8.7k points
7 votes

Answer:

We conclude that:


\left(9c^(-9)\right)^(-3)=(c^(27))/(729)

Explanation:

Given the expression


\left(9c^(-9)\right)^(-3)

Apply exponent rule:
a^(-b)=(1)/(a^b)


\left(9c^(-9)\right)^(-3)=(1)/(\left(9c^(-9)\right)^3)

Let us first solve:


\left(9c^(-9)\right)^3

Apply exponent rule:
\left(a\cdot \:b\right)^n=a^nb^n


\left(9c^(-9)\right)^3=9^3\left(c^(-9)\right)^3


=729\left(c^(-9)\right)^3

Apply exponent rule:
\left(a^b\right)^c=a^(bc),\:\quad \mathrm{\:assuming\:}a\ge 0


=729c^(-9\cdot \:3)


=729c^(-27)

Apply exponent rule:
a^(-b)=(1)/(a^b)


=729\cdot (1)/(c^(27))


=(729)/(c^(27))

Therefore, the expression
\left(9c^(-9)\right)^(-3)=(1)/(\left(9c^(-9)\right)^3) becomes


\left(9c^(-9)\right)^(-3)=(1)/(\left(9c^(-9)\right)^3)


=(1)/((729)/(c^(27)))
\left(9c^(-9)\right)^3=(729)/(c^(27))


=(c^(27))/(729)
(1)/((b)/(c))=(c)/(b)

Hence, we conclude that:


\left(9c^(-9)\right)^(-3)=(c^(27))/(729)

User Aarbor
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories