111k views
11 votes
Which is the simplified form of (9c^-9)^-3?

2 Answers

6 votes

Answer:

b

Explanation:

User AkkeyLab
by
4.8k points
7 votes

Answer:

We conclude that:


\left(9c^(-9)\right)^(-3)=(c^(27))/(729)

Explanation:

Given the expression


\left(9c^(-9)\right)^(-3)

Apply exponent rule:
a^(-b)=(1)/(a^b)


\left(9c^(-9)\right)^(-3)=(1)/(\left(9c^(-9)\right)^3)

Let us first solve:


\left(9c^(-9)\right)^3

Apply exponent rule:
\left(a\cdot \:b\right)^n=a^nb^n


\left(9c^(-9)\right)^3=9^3\left(c^(-9)\right)^3


=729\left(c^(-9)\right)^3

Apply exponent rule:
\left(a^b\right)^c=a^(bc),\:\quad \mathrm{\:assuming\:}a\ge 0


=729c^(-9\cdot \:3)


=729c^(-27)

Apply exponent rule:
a^(-b)=(1)/(a^b)


=729\cdot (1)/(c^(27))


=(729)/(c^(27))

Therefore, the expression
\left(9c^(-9)\right)^(-3)=(1)/(\left(9c^(-9)\right)^3) becomes


\left(9c^(-9)\right)^(-3)=(1)/(\left(9c^(-9)\right)^3)


=(1)/((729)/(c^(27)))
\left(9c^(-9)\right)^3=(729)/(c^(27))


=(c^(27))/(729)
(1)/((b)/(c))=(c)/(b)

Hence, we conclude that:


\left(9c^(-9)\right)^(-3)=(c^(27))/(729)

User Aarbor
by
3.8k points