101k views
4 votes
How to find the derivative 5x²-2x+1

User Miguel P
by
8.0k points

2 Answers

5 votes
U can with practical method or with definition.


f(x)=5x^2-2x+1\\ \\f'(x)=2*5x^(2-1)-1*2x^(1-1)+0\\ \\f'(x)=10x-2\\ \\f'(x)=2(5x-1)

User Voglster
by
8.4k points
3 votes
What you need to know:


y=k{ x }^( n )\\ \\ \ln { y } =\ln { \left( k{ x }^( n ) \right) }


\\ \\ \ln { y } =\ln { k } +\ln { \left( { x }^( n ) \right) } \\ \\ \ln { y } =\ln { k } +n\ln { x }


\\ \\ \frac { 1 }{ y } \cdot \frac { dy }{ dx } =\frac { n }{ x } \\ \\ y\cdot \frac { 1 }{ y } \cdot \frac { dy }{ dx } =\frac { n }{ x } \cdot y


\\ \\ \frac { dy }{ dx } =n{ x }^( -1 )\cdot k{ x }^( n )\\ \\ \frac { dy }{ dx } =kn{ x }^( -1+n )


\\ \\ \frac { dy }{ dx } =kn{ x }^( n-1 )

If this is the case, when:


y=5{ x }^( 2 )-2x+1

dy/dx is...


\\ \\ \frac { dy }{ dx } =5\cdot 2{ x }^( 2-1 )-2\cdot 1{ x }^( 1-1 )\\ \\ \frac { dy }{ dx } =10x-2\cdot { x }^( 0 )


\\ \\ \frac { dy }{ dx } =10x-2
User Andrii Kudriavtsev
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories