154k views
5 votes
Use gauss-jordan elimination to solve the following system of equations. 3x 5y = 7 6x − y = −8

User Alan West
by
7.1k points

1 Answer

2 votes
yasss

3x+5y=7
6x-1y=-8
so what you do is remove the placeholders ad put them in matrix form

so

\left[\begin{array}{ccc}3&5|&7\\6&-1|&-8\end{array}\right]
eliminate one placeholder at a time

remember: first column=x, 2nd column=y, 3rd column=constant


let's eliminate x's
times first row by -2

\left[\begin{array}{ccc}-6&-10|&-14\\6&-1|&-8\end{array}\right]
add that to 2nd row

\left[\begin{array}{ccc}-6&-10|&-14\\0&-11|&-22\end{array}\right]
divide last row by -11

\left[\begin{array}{ccc}-6&-10|&-14\\0&1|&2\end{array}\right]


eliminate y's now
multiply last row by 10

\left[\begin{array}{ccc}-6&-10|&-14\\0&10|&20\end{array}\right]
add 2nd row to first row

\left[\begin{array}{ccc}-6&0|&6\\0&10|&20\end{array}\right]
divide first row by -6

\left[\begin{array}{ccc}1&0|&-1\\0&10|&20\end{array}\right]
divide last row by 10

\left[\begin{array}{ccc}1&0|&-1\\0&1|&2\end{array}\right]

\left[\begin{array}{ccc}x&y|&c\\x&y|&c\end{array}\right]
1x=-1
1y=2

x=-1
y=2
(-1,2)
User Grizzthedj
by
8.2k points