13.4k views
0 votes
Angle θ lies in the second quadrant, and sin θ = 3/5.
cos θ =

tan θ =

User WPFUser
by
7.7k points

1 Answer

5 votes

Answer:



cos\Theta =(4)/(5)




tan\Theta =(3)/(4)


Explanation:

Given : sin θ = 3/5

To Find : value of cos θ and tan θ

Solution :

use the identity:



sin^(2)\Theta +cos^(2)\Theta =1


putting value of sin θ



((3)/(5))^(2) + cos^(2)\Theta =1



(9)/(25) +cos^(2)\Theta =1



cos^(2)\Theta = 1-(9)/(25)



cos^(2)\Theta = (16)/(25)



cos\Theta = \sqrt{(16)/(25)}



cos\Theta =(4)/(5)


Thus ,
cos\Theta =(4)/(5)

Now to find value of tan θ


Since we know that



tan\Theta =(sin\Theta )/(cos\Theta ) (identity)



tan\Theta =((3)/(5) )/((4)/(5) )



tan\Theta =(3)/(5)/ (4)/(5)



tan\Theta =(3)/(5)*  (5)/(4)



tan\Theta =(3)/(4)


Thus , the value of



tan\Theta =(3)/(4)



cos\Theta =(4)/(5)



User Amir Shirazi
by
8.6k points