106k views
2 votes
Use the Special Right Triangle to evaluate sin 45°, cos 45° and tan 45°. Your answers should be exact (not a decimal).

A. sin 45 = √2/2, cos 45 = √2/2, tan 45 = 1
B. sin 45 = 1, cos 45 = 1, tan 45 = √2/2
C. sin 45 = 1/2, cos 45 = √3/2, tan 45 = √3
D. sin 45 = 0, cos 45 = 1, tan 45 = 0

User TheLazyFox
by
7.7k points

2 Answers

5 votes

Answer:

The correct option is A)
\sin 45^(\circ) =(√(2))/(2),\ \cos 45^(\circ) =(√(2))/(2) \ \text{and} \ \tan 45^(\circ) =1

Explanation:

we need to evaluate
\sin 45^(\circ), \ \cos 45^(\circ) \ \text{and} \ \tan45^(\circ) with the use of special right triangle

In triangle ABC (figure -1 )

Since,
\sin \theta =(opposite)/(hypoteneous)


\cos  \theta =(adjacent)/(hypoteneous)


\tan  \theta =(opposite)/(adjacent)

so,


\sin 45^(\circ) =(opposite)/(hypoteneous)


\sin 45^(\circ) =(x)/(x√(2))


\sin 45^(\circ) =(1)/(√(2))


\cos 45^(\circ) =(adjacent)/(hypoteneous)


\cos 45^(\circ) =(x)/(x√(2))


\cos 45^(\circ) =(1)/(√(2))

and


\tan  45^(\circ) =(opposite)/(adjacent)


\tan  45^(\circ) =(x)/(x)


\tan 45^(\circ) =1

Therefore, the correct option is A)
\sin 45^(\circ) =(√(2))/(2),\ \cos 45^(\circ) =(√(2))/(2) \ \text{and} \ \tan 45^(\circ) =1

Use the Special Right Triangle to evaluate sin 45°, cos 45° and tan 45°. Your answers-example-1
User Bryan A
by
8.3k points
6 votes
The best option is (A) sin 45 = √2/2, cos 45 = √2/2, tan 45 = 1.
User Phil Factor
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories