200k views
3 votes
Write the area A of a square as a function of its perimeter P. ...?

2 Answers

3 votes

Final answer:

The area of a square as a function of its perimeter is A = (P/4)².

Step-by-step explanation:

The area of a square can be represented as a function of its perimeter. Let's say the side length of the square is a. The perimeter of the square is given by P = 4a. So, to write the area A as a function of the perimeter P, we can use the formula:
A = (P/4)²

User Kasun
by
8.5k points
3 votes
The answer is A = P²/16

The perimeter P of a square is sum of its sides s: P = s + s + s + s = 4s
The area A of a square with side s is: A = s * s = s²

Step 1: Solve s from the formula for the perimeter.
Step 2: substitute s from the formula for the perimeter into the formula for the area.

Step 1:
P = 4s
s = P/4

Step 2:
A = s²
s = P/4
A = (P/4)²
A = P²/4²
A = P²/16
User Kris Erickson
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories