476,138 views
39 votes
39 votes
Help plsWhat is the length of RP? a) 3b) 8c) 5d) not here

Help plsWhat is the length of RP? a) 3b) 8c) 5d) not here-example-1
User Fozylet
by
2.4k points

1 Answer

14 votes
14 votes

The locus of all points from which a given segment subtends equal angles is a circle. Therefore:


RT\cdot RS=RQ\cdot RP

so:


\begin{gathered} (4+6)(4)=(x+2+x)(x+2) \\ 10(4)=(2x+2)(x+2) \\ 40=2x^2+6x+4 \\ \end{gathered}

Divide both sides by 2:


\begin{gathered} x^2+3x+2=20 \\ so\colon \\ x^2+3x-18=0 \end{gathered}

The factors of -18 that sum to 3 are 6 and -3, therefore:


\begin{gathered} x^2+3x-18=(x+6)(x-3) \\ so\colon \\ x=3 \\ or \\ x=-6 \end{gathered}

So:


\begin{gathered} x=3 \\ because\colon \\ RP>0 \\ RP=x+2 \\ RP=3+2 \\ RP=5 \end{gathered}

User Jakub Piskorz
by
2.8k points