216k views
1 vote
Derek wrote the following paragraph proof for the Vertical Angles Theorem:

The sum of angle 1 and angle 4 and the sum of angle 3 and angle 4 are each equal to 180 degrees by the definition of supplementary angles. The sum of angle 1 and angle 4 is equal to the sum of angle 3 and angle 4 by the transitive property of equality. Angle 1 is equal to angle 3 _____________________.

Which phrase completes the proof?

A. by construction using a straightedge
B. by the definition of a perpendicular bisector
C. by the subtraction property of equality
D. by the vertical angles theroem

User Magno C
by
8.1k points

2 Answers

5 votes

Answer:

Option C is correct.

By the Subtraction Property of Equality.

Step-by-step explanation:

Supplementary Angles: Two angles are Supplementary if the sum of the measure of angles is 180 degree.

Given:


m\angle 1+ m\angle 4 =180^(\circ)


m\angle 3+ m\angle 4 =180^(\circ) {By definition of supplementary angle} .......[1]

Transitive Property of equality:

If a=b and

b = c,

then a = c

By the transitive property,

[1} ⇒
m\angle 1+m\angle 4 =m\angle 3+m\angle 4 ......[2]

Subtraction property of equality states that you subtract the same number from both sides of an equation.

Subtract
m\angle 4 from both the sides in [2];


m\angle 1+m\angle 4-m\angle4=m\angle 3+m\angle 4-m\angle 4

Simplify:


m\angle 1 =m\angle 3 {By subtraction property of equality}

Therefore, the only phrase which completes the proof is; by the subtraction property of equality


User Fargonaut
by
8.5k points
3 votes
the answer is C. by the subtraction property of equality
proof:
The sum of angle 1 and angle 4 is equal to the sum of angle 3 and angle 4 by the transitive property of equality
A1 + A4 = A3 + A4 so
A1 = A3 + A4 - A4, and A1 = A3
User Ancurio
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories