222k views
0 votes
Find the perimeter of the triangle whose vertices are the following, specified points in the plane.

(-10,-3), (1,4) and (-1,7)

1 Answer

3 votes

Given:

The vertices of the triangle are (-10,-3), (1,4) and (-1,7).

To find:

The perimeter of the triangle.

Solution:

Distance formula:


d=√((x_2-x_1)^2+(y_2-y_1)^2)

Let the vertices of the triangle are A(-10,-3), B(1,4) and C(-1,7).

Using distance formula, we get


AB=√((1-(-10))^2+(4-(-3))^2)


AB=√((1+10)^2+(4+3)^2)


AB=√((11)^2+(7)^2)


AB=√(121+49)


AB=√(170)

Similarly,


BC=√(\left(-1-1\right)^2+\left(7-4\right)^2)=√(13)


AC=√(\left(-1-\left(-10\right)\right)^2+\left(7-\left(-3\right)\right)^2) =√(181)

Now, the perimeter of the triangle is


Perimeter=AB+BC+AC


Perimeter=√(170)+√(13)+√(181)


Perimeter\approx 13.038+3.606+13.454


Perimeter=30.098

Therefore, the perimeter of the triangle is 30.098 units.

User Opedog
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories