Given:
The vertices of the triangle are (-10,-3), (1,4) and (-1,7).
To find:
The perimeter of the triangle.
Solution:
Distance formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/56st313bklvuad5kmg37orzosnah8k5ru7.png)
Let the vertices of the triangle are A(-10,-3), B(1,4) and C(-1,7).
Using distance formula, we get
![AB=√((1-(-10))^2+(4-(-3))^2)](https://img.qammunity.org/2022/formulas/mathematics/college/3k9atksy77vfkbshfzh1vyaa7hru7cw3bq.png)
![AB=√((1+10)^2+(4+3)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/fymqn0pk4ol6uvoowksbw411uhe6w9zr4q.png)
![AB=√((11)^2+(7)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/wwxn35w8wqdmncmoaytiai83xrwp2ssvhk.png)
![AB=√(121+49)](https://img.qammunity.org/2022/formulas/mathematics/college/xwadxiixe9usqy5y7ld1p7jbjz2ukshu6v.png)
![AB=√(170)](https://img.qammunity.org/2022/formulas/mathematics/college/h9qrfpnpbqo9bzbgnv45t4743vu8ei0fv3.png)
Similarly,
![BC=√(\left(-1-1\right)^2+\left(7-4\right)^2)=√(13)](https://img.qammunity.org/2022/formulas/mathematics/college/tyb6knqsglbes9mv626ktntnl53y7hokou.png)
![AC=√(\left(-1-\left(-10\right)\right)^2+\left(7-\left(-3\right)\right)^2) =√(181)](https://img.qammunity.org/2022/formulas/mathematics/college/sja5bhfft7c2s8lrs08pkv7tk92vavqw0a.png)
Now, the perimeter of the triangle is
![Perimeter=AB+BC+AC](https://img.qammunity.org/2022/formulas/mathematics/college/nou8gcuwy2ud1zsxtu66eqd24j4hdeyv8g.png)
![Perimeter=√(170)+√(13)+√(181)](https://img.qammunity.org/2022/formulas/mathematics/college/q8uasvregd334es8zzkqbovfn0wex183xp.png)
![Perimeter\approx 13.038+3.606+13.454](https://img.qammunity.org/2022/formulas/mathematics/college/dddy5agjb8dpyd4petg55fhhmo3ikmzq83.png)
![Perimeter=30.098](https://img.qammunity.org/2022/formulas/mathematics/college/mpmypk9b7xuh1l3bazqj0vru4bzrza32wa.png)
Therefore, the perimeter of the triangle is 30.098 units.