222k views
0 votes
Find the perimeter of the triangle whose vertices are the following, specified points in the plane.

(-10,-3), (1,4) and (-1,7)

1 Answer

3 votes

Given:

The vertices of the triangle are (-10,-3), (1,4) and (-1,7).

To find:

The perimeter of the triangle.

Solution:

Distance formula:


d=√((x_2-x_1)^2+(y_2-y_1)^2)

Let the vertices of the triangle are A(-10,-3), B(1,4) and C(-1,7).

Using distance formula, we get


AB=√((1-(-10))^2+(4-(-3))^2)


AB=√((1+10)^2+(4+3)^2)


AB=√((11)^2+(7)^2)


AB=√(121+49)


AB=√(170)

Similarly,


BC=√(\left(-1-1\right)^2+\left(7-4\right)^2)=√(13)


AC=√(\left(-1-\left(-10\right)\right)^2+\left(7-\left(-3\right)\right)^2) =√(181)

Now, the perimeter of the triangle is


Perimeter=AB+BC+AC


Perimeter=√(170)+√(13)+√(181)


Perimeter\approx 13.038+3.606+13.454


Perimeter=30.098

Therefore, the perimeter of the triangle is 30.098 units.

User Opedog
by
5.9k points