186k views
1 vote
What is the simplified form of the expression k^3(k^7/5)^-5

User Stalyn
by
8.2k points

1 Answer

2 votes
Step 1. Use the negative power rule:
x^(-a) = (1)/( x^(a) )


k^(3) * (1)/(( ( k^(7) )/(5)) ^(5) )

Step 2. Use Division Distributive Property:
( (x)/(y) )^a= (xa)/(ya)


k^(3) * 1 ___ (k^(7)) _____ 5^(5)

Step 3. Use Power Rule:
( x^(a) )^b=x^a^b


k^3*1 ___ k^3^5 _____ 5^5

Step 4. Simplify
5^5 to
3125


k^3*1 ___ k^3^5 ______ 3125

Step 5. Invert and multiply


k^3*1* (3125)/(k^3^5)

Step 6. Simplify


(3125 k^(3) )/(k^3^5)

Step 7. Use Quotient Rule:
(xa)/(xb) =x^a^-^b


3125k^3^-^3^5

Step 8. Simplify 3 - 35 to -32


3125k^-^3^2

Step 9. Use Negative Power Rule:
x^-^a= (1)/( x^(a) )


3125* (1)/(k^3^2)

Step 10. Simplify


(3125)/(k^3^2)

Done!
User Bodokh
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories