186k views
1 vote
What is the simplified form of the expression k^3(k^7/5)^-5

User Stalyn
by
8.2k points

1 Answer

2 votes
Step 1. Use the negative power rule:
x^(-a) = (1)/( x^(a) )


k^(3) * (1)/(( ( k^(7) )/(5)) ^(5) )

Step 2. Use Division Distributive Property:
( (x)/(y) )^a= (xa)/(ya)


k^(3) * 1 ___ (k^(7)) _____ 5^(5)

Step 3. Use Power Rule:
( x^(a) )^b=x^a^b


k^3*1 ___ k^3^5 _____ 5^5

Step 4. Simplify
5^5 to
3125


k^3*1 ___ k^3^5 ______ 3125

Step 5. Invert and multiply


k^3*1* (3125)/(k^3^5)

Step 6. Simplify


(3125 k^(3) )/(k^3^5)

Step 7. Use Quotient Rule:
(xa)/(xb) =x^a^-^b


3125k^3^-^3^5

Step 8. Simplify 3 - 35 to -32


3125k^-^3^2

Step 9. Use Negative Power Rule:
x^-^a= (1)/( x^(a) )


3125* (1)/(k^3^2)

Step 10. Simplify


(3125)/(k^3^2)

Done!
User Bodokh
by
7.7k points