153k views
24 votes
The accompanying specific gravity values describe various wood types used in construction. 0.320.350.360.360.370.380.400.400.40 0.410.410.420.420.420.420.420.430.44 0.450.460.460.470.480.480.490.510.54 0.540.550.580.630.660.660.670.680.78 Construct a stem-and-leaf display using repeated stems. (Enter numbers from smallest to largest separated by spaces. Enter NONE for stems with no values.)

User AgentX
by
6.2k points

1 Answer

5 votes

Answer:


\begin{array}{ccc}{Steam} & {\vert} & {Leaf} \ \\ \\ {0.3} & {\vert} & {2\ 5\ 6\ 6\ 7\ 8} \ \\ \\{0.4} & {\vert} & {0\ 0\ 0\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 4\ 5\ 6\ 6\ 7\ 8\ 8\ 9} \ \\ \ \\ {0.5} & {\vert} & {1\ 4\ 4\ 5\ 8} \ \\ \ \\ {0.6} & {\vert} & {3\ 6\ 6\ 7\ 8} \ \\ \ \\ {0.7} & {\vert} & {8} \ \ \end{array}

Step-by-step explanation:

Given


0.32,\ 0.35,\ 0.36,\ 0.36,\ 0.37,\ 0.38,\ 0.40,\ 0.40,\ 0.40,\ 0.41,


0.41,\ 0.42,\ 0.42,\ 0.42,\ 0.42,\ 0.42,\ 0.43,\ 0.44,\ 0.45,\ 0.46,


0.46,\ 0.47,\ 0.48,\ 0.48,\ 0.49,\ 0.51,\ 0.54,\ 0.54,\ 0.55,


0.58,\ 0.63,\ 0.66,\ 0.66,\ 0.67,\ 0.68,\ 0.78.

Required

Plot a steam and leaf display for the given data

Start by categorizing the data by their tenth values:


0.32,\ 0.35,\ 0.36,\ 0.36,\ 0.37,\ 0.38.


0.40,\ 0.40,\ 0.40,\ 0.41,\ 0.41,\ 0.42,\ 0.42,\ 0.42,\ 0.42,\ 0.42,


0.43,\ 0.44,\ 0.45,\ 0.46,\ 0.46,\ 0.47,\ 0.48,\ 0.48,\ 0.49.


0.51,\ 0.54,\ 0.54,\ 0.55,\ 0.58.


0.63,\ 0.66,\ 0.66,\ 0.67,\ 0.68.


0.78.

The 0.3's is will be plotted as thus:


\begin{array}{ccc}{Steam} & {\vert} & {Leaf} \ \\ {0.3} & {\vert} & {2\ 5\ 6\ 6\ 7\ 8} \ \ \end{array}

The 0.4's is as follows:


\begin{array}{ccc}{Steam} & {\vert} & {Leaf} \ \\ {0.4} & {\vert} & {0\ 0\ 0\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 4\ 5\ 6\ 6\ 7\ 8\ 8\ 9} \ \ \end{array}

The 0.5's is as follows:


\begin{array}{ccc}{Steam} & {\vert} & {Leaf} \ \\ {0.5} & {\vert} & {1\ 4\ 4\ 5\ 8} \ \ \end{array}

The 0.6's is as thus:


\begin{array}{ccc}{Steam} & {\vert} & {Leaf} \ \\ {0.6} & {\vert} & {3\ 6\ 6\ 7\ 8} \ \ \end{array}

Lastly, the 0.7's is as thus:


\begin{array}{ccc}{Steam} & {\vert} & {Leaf} \ \\ {0.7} & {\vert} & {8} \ \ \end{array}

The combined steam and leaf plot is:


\begin{array}{ccc}{Steam} & {\vert} & {Leaf} \ \\ \\ {0.3} & {\vert} & {2\ 5\ 6\ 6\ 7\ 8} \ \\ \\{0.4} & {\vert} & {0\ 0\ 0\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 4\ 5\ 6\ 6\ 7\ 8\ 8\ 9} \ \\ \ \\ {0.5} & {\vert} & {1\ 4\ 4\ 5\ 8} \ \\ \ \\ {0.6} & {\vert} & {3\ 6\ 6\ 7\ 8} \ \\ \ \\ {0.7} & {\vert} & {8} \ \ \end{array}

User EHorodyski
by
5.9k points