67,021 views
28 votes
28 votes
Two similar triangles. The first triangle has a side length of 6 inches, which corresponds to the second triangle's side of 18 inches. The first triangle has a side length of 11 inches that corresponds to the missing side on the second triangle. If the triangles are similar, what is the length of the missing side

User Jeffrey Harrington
by
2.7k points

1 Answer

18 votes
18 votes

As they are similar triangles, it means their sides are proportional, then the ratio of the know sides is:


6in\colon18in

To find the length of the missing side we can use proportions as follows:


\begin{gathered} (6in)/(18in)=(11in)/(x) \\ \text{Where x is the missing side, now solve for x} \\ x=(11in*18in)/(6in) \\ x=33in \end{gathered}

Answer: The length of the missing side is 33 inches.

User Ilya Vinogradov
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.