Answer:
3.28 degree
Step-by-step explanation:
We are given that
Distance between the ruled lines on a diffraction grating, d=1900nm=
![1900* 10^(-9)m](https://img.qammunity.org/2022/formulas/physics/college/cdgf2i8qg90xo77wqju7awvobw0dhpmoud.png)
Where
![1nm=10^(-9) m](https://img.qammunity.org/2022/formulas/physics/college/2vfl10sws8j8esfgple0axvko46iizkqq6.png)
![\lambda_2=400nm=400*10^(-9)m](https://img.qammunity.org/2022/formulas/physics/college/u79jx3h3t2qppn8jc5zyyh37op9i4ytcib.png)
![\lambda_1=700nm=700* 10^(-9)m](https://img.qammunity.org/2022/formulas/physics/college/ycnqgpgsaksnp99dinogdsrz1ztz7dxam3.png)
We have to find the angular width of the gap between the first order spectrum and the second order spectrum.
We know that
![\theta=sin^(-1)((m\lambda)/(d))](https://img.qammunity.org/2022/formulas/physics/college/u1zqb9zcke8tm9mgccmi1rz7qec37owsqz.png)
Using the formula
m=1
![\theta_1=sin^(-1)((1*700* 10^(-9))/(1900* 10^(-9)))](https://img.qammunity.org/2022/formulas/physics/college/d60yl9pi9ci6ijeyx9za14l9d6qcx8kr2b.png)
![\theta=21.62^(\circ)](https://img.qammunity.org/2022/formulas/physics/college/2aohjzupeunnk7gb8hwts2x0kc2myfg2gc.png)
Now, m=2
![\theta_2=sin^(-1)((2*400* 10^(-9))/(1900* 10^(-9)))](https://img.qammunity.org/2022/formulas/physics/college/nk3esp7bu7rwjh667niv8v24z2n77f81r1.png)
![\theta_2=24.90^(\circ)](https://img.qammunity.org/2022/formulas/physics/college/2ta39s863zht0raxlb2e28s3k5u4ww3kzv.png)
![\Delta \theta=\theta_2-\theta_1](https://img.qammunity.org/2022/formulas/physics/college/6cds9bsdptvlg9jhs5ulvyvg7y7gh3ylx3.png)
![\Delta \theta=24.90-21.62](https://img.qammunity.org/2022/formulas/physics/college/x5oygzqecop9mzf89ewmycydktqitpills.png)
![\Delta \theta=3.28^(\circ)](https://img.qammunity.org/2022/formulas/physics/college/o2rq5uytzptzhqe3wkez23mwc260h6l6p8.png)
Hence, the angular width of the gap between the first order spectrum and the second order spectrum=3.28 degree